bb cross section measurement at CDF

Sofia Vallecorsa Universisty of Geneva

DIS 2007 Munich 16th-25th Apr 2007

ERSITÉ DE GENÈVE

Outline

- b production at the Tevatron
- The CDF detector
- The Silicon Vertex Trigger
- Jet reconstruction
- b-jet identification
- · The bb di-jet cross section
- Comparison to Monte Carlo

b quark production

THE STUDY OF 6 PRODUCTION PROPERTIES IS AN IMPORTANT TEST TO pQCD

b-jets as experimental input:

- include most of quark fragmentation remnants small dependence on fragmentation
- wide P_T spectrum

CDF HAS ALREADY MEASURED THE INCLUSIVE B-JET CROSS SECTION

b quark production

- bb cross section and correlation give a hint on b production mechanism
- · GOOD TEST TO NLO VS LO PREDICTIONS

CDF

TEVATRON HAS DELIVERED MORE THAN 2 fb-1

CDF FULLY UPGRADED FOR RUN II:

- SI & TRACKING
- EXTENDED CALORIMETERS RANGE
- L2 TRIGGER ON DISPLACED TRACKS
- HIGH RATE TRIGGER/DAQ

~85 % DAQ EFFICIENCY

CALORIMETER

- CEM LEAD + SCINT 13.4%/√E_T⊕2%
- CHA STEEL + SCINT 75%/√E_T⊕3%

TRACKING

- $-\sigma(d_0) = 40\mu m$ (INCL. $30\mu m$ BEAM)
- $-\sigma(P_T)/P_T = 0.15 \% P_T$

Silicon Vertex Trigger

 $\sigma(bb) \sim 50 \ \mu b \ @ 1.96 \ TeV -> RATE OF FEW KHz$

LONG LIFETIME (~1.5 ps) OF B-HADRON

-> DEDICATED IMPACT PARAMETER TRIGGER BASED ON SILICON DETECTOR HITS AND L1 FAST TRACKER INFO

USE @ HIGH PT: SEARCH FOR NEW PHYSICS NEW FOR QCD STUDIES

Jet reconstruction

Final state partons result in collimated flows of hadrons: jets

CONE ALGORITHM: PARTICLES OR TOWERS CLUSTER WITHIN A (η,ϕ) CONE

• Seed towers: Only iterate over towers above $E_T > 1$ GeV

Need to correct jet energy:

Detector effects:

- resolution and efficiency
- pile-up interactions (up to ~4)

Model dependent:

- fragmentation/hadronization effects
- mc based -> to be tuned on data

Underlying event

In this measurement: specific b-jet correction

Identifying b-jets

B-TAGGING:

SEARCHING FOR THE B DECAY VERTEX

- Need ≥ two displaced tracks to reconstruct a secondary vertex
- Require secondary vertex to be well separated from primary vertex in $r-\phi$ space by cutting on L_{xy} significance

MEASURED ON DATA

Event selection

ONLINE SELECTION:

- · Level1: 2 L1 TRACKS AND 2 CAL TOWER
- Level2: 2 SVT TRACKS $|d_0|$ > 100 μm AND 2 CAL CLUSTER E_T > 15 GeV $(\Delta \phi$ CLUSTER-TRACK MATCHING)
- · Level3: 2 TRACKS MATCHED TO 2 JETS

OFFLINE SELECTION:

- PRIMARY VERTEX |Z|<60 cm FOR GOOD ENERGY MEASUREMENT AND VERTEXING
- 2 SVT TRACKS $|d_0|$ >120 μ m
- 2 **b-TAGGED JET** (CONE 0.4) E_{T} >35, 32 GEV, $|\eta|$ <1.2
- GEOMETRICAL (△R)
 TRACK JET MATCHING

NEED A TIGHT OFFLINE SELECTION TO ACCOUNT FOR EVENT SHAPING BY THE TRIGGER

OFFLINE SELECTION
EFFICIENCY IS MEASURED
IN MC & SCALED TO DATA

b purity of tagged jets

b JET FRACTION IN A TAGGED JET SAMPLE CAN BE EXTRACTED FROM DATA: the invariant mass of the tracks of the secondary vertex is different for b/c/light or gluon jets

SVT + TAG selection has low efficiency BUT very high purity ~80%

In a 2 tagged jet sample:

- · SUM SEC. VTX MASS OF 2 JETS
- · BUILD bb AND NON-bb TEMPLATES
- · FIT DATA

bb di-jet cross section

$$\frac{d\sigma}{dE_{T}\Delta\eta} = \frac{N_{2SVT} \cdot f_{2SVT}^{2b} \cdot C_{i}}{\Delta\eta \cdot \Delta E_{T} \cdot \varepsilon_{2SVT} \cdot \int \mathcal{L}}$$

N_{2svt}: Number of events including 2 SVT-tagged jets

f^{2b}_{2svt}: bb-jets fraction

ε_{2svt}: Efficiency for 2 SVT-tagged jets

- Leading jet: $E_T^{corr}>35 |\eta|<1.2$

- Second jet: $E_T^{corr}>32 |\eta|<1.2$

C: Correction factors from Monte Carlo for acceptance and

smearing effects

Δη: Pseudorapidity range $|\eta|$ <1.2

 ΔE_{T} : Transverse energy bin size

f: Integrated luminosity

E_tcorr: specific correction is applied to account for harder fragmentation and b-hadron decays inside the jet

Syst. uncertainties

TOTAL SYSTEMATIC UNCERTAINTIES ARE ~20-30 %

- JET ENERGY SCALE (15%-20%),
- LUMINOSITY (6%)
- UNFOLDING FACTORS (4%)
- ET DEPENDENCE DATA/MC
- TAGGING EFFICIENCY (4%)
 - b QUARK MULTIPLICITY INSIDE THE JET
- B-PURITY (~7%) (fraction fit)
 - COMPOSITION OF NON-b TEMPLATES (b/c/LIGHT RATIOS)
 - SECONDARY VERTEX MASS RECO (TRACKING EFFICIENCY IN DATA AND MC)

bb di-jet cross section

Data is compared to Monte Carlo prediction:

- PYTHIA (TUNE A)*
- HERWIG + JIMMY °
- NLO MC@NLO + JIMMY

^{*} tuned on Run I data for underlying event (UE)

[°] Multi-parton interactions generator links to Herwig (see hep-ph/9601371)

$\Delta \phi$ correlation

Δφ CORRELATION IS SENSITIVE TO PRODUCTION MECHANISMS

· PEAK @ LARGE Δφ

• NON NEGLIGIBLE TAIL AT LOW $\Delta \phi$

$\Delta \phi$ correlation

MC@NLO agrees with data within the systematic error AND describes low $\Delta \phi$ better than Herwig + Jimmy

Herwig + Jimmy prediction is better than Pythia.

-> In the region $E_T(jet1)>35$ GeV, $E_T(jet2)>32$ GeV $|\eta_{1,2}|<1.2$

LOW $\Delta \phi$ prediction is different at LO and NLO (MC@NLO)

$\Delta \phi$ correlation

Both LO and NLO predictions are enhanced by adding Multi-Parton interaction simulation (Jimmy):

Summary

A PRELIMINARY MEASUREMENT OF THE bb DI-JET CROSS SECTION AND ANGULAR CORRELATION HAS BEEN PRESENTED

- THE SVT TRIGGER IS VERY HELPFUL IN THE STUDY OF HIGH PT QCD PROCESSES AND WELL UNDER CONTROL
- · COMPARISON TO NLO IS GOOD
 - bb ANGULAR CORRELATION SHOWS EVENTS ARE MAINLY PRODUCED BY **FLAVOUR CREATION** MECHANISMS

LOW $\Delta \phi$ TAIL SUGGESTS NON- NEGLIGIBLE CONTRIBUTION FROM OTHER PROCESSES

 THE SIMULATION OF THE UNDERLYING EVENT IS NECESSARY TO CORRECTLY DESCRIBE DATA

Trigger selection

· Level 1

- Two 5GeV towers
- Two XFT tracks pt>2GeV/c

· Level 2

- Two clusters (Et>15 GeV, $|\eta|<1.5$)
- Two SVT tracks |d0|>100μm
- Cluster-SVT matching ($|\Delta \phi| < 0.7$)

· Level 3

- Two cone-04 jets Et>20 GeV
- Two COT tracks matched to SVT (|d0|>100 μ m)
- Two Si tracks matched to SVT (|d0|>80 μm)

SVT-tag efficiency

DI-JET INVARIANT MASS

DI-JET $\Delta \phi$

bb purity

DI-JET INVARIANT MASS

DI-JET $\Delta \phi$

Systematic uncertainties:

